Saturday, October 7, 2017

She's a brainiac: taming my amygdala's response to neuroscience

Cerebellar neurons by Ramón y Cajal
The study of the brain has always seemed so inaccessible to me. There is something so meta about it that, frankly, it seems to me that only super advanced beings could think about how our thoughts are formed. I felt comfortable in my single cell universe of cell biology, and I felt like neuroscience was far too intricate and complicated for my brain to handle.

Last year, I started working at Cell Reports, which is a broad science, open access journal. We get submissions from every field of biology. I am a cell biologist by training, so my comfort zone is there, but by new journal has really pushed me to read even more broadly than my previous experience at BBA.

For me, neuroscience papers are harder to access, especially because I have a hard time distinguishing my lateral habenula from my amygdala. To solve this shortcoming, I decided it was time to do some immersion therapy. I've read a few popular science books about the brain beforemost memorably Sam Kean's Dueling Neurosurgeons. More recently, I read The Genius of Birds, which taught me a lot about how scientists are approaching experiments with the brain and behavior. These experimental designs are ingenious (more evidence that neuroscientists are just smarter beings), but they can seem a bit funny at times (e.g., mouse behind the wheel). Recently, using high resolution brain imaging like fMRI has allowed researchers to map changes in the brain as people think about people or listen to different types of music or are under the effects of LSD.


To continue my immersion therapy, I have been trying to find good popular science books about the brain. Browsing my local book store, I came across The Brain: The Story of You, by David Eagleman, a neuroscientist and adjunct professor at Stanford University. The book, which is also a PBS series, includes some new research as well as some classic experiments in neuroscience. These classical approaches, which were very well cataloged in The Dueling Neurosurgeons, is to rely on patients that are missing part of their brain and see what sort of behaviors they exhibit. This is certainly a noninvasive approach, which could be considered as a physiologically relevant organ-specific knock out. The problem is that the brain is incredible plastic (that word means something very different in neuroscience) and so it can adapt to the limitations of a missing piece. The other problem is that there are a limited number of people with missing parts to their brains!


Luckily, advances in neuro-imaging and the advent of techniques like optogenetics, have allowed neuroscientists to stray from these classic experimental models. Of course, that doesn't keep Eagleman from telling the crazy stories reminiscent of Oliver Sacks and his contributions to Radiolab. For example, he tells the case of the man who lost his sight at 3 years old and had a stem cell therapy to restore his vision in middle age. The therapy restored the ability of his eyes to receive visual stimuli, but his brain needed to be re-trained to interpret the messages from the eyes. Another fascinating bit was about proprioception, which could be considered the sixth sense that controls your body position. You might not know you have it- until you lose it, but this is what allows us to have fluid movements like walking or biking. There are rare cases of people who have lost this sense and the affected individual has to think carefully when moving and must train themselves to be able to move with some degree of fluidity.

While The Brain probably isn't the best book on the subject, it is very accessible and fun to read and certainly has helped in my immersion therapy. While I can now remember what the amygdala does, I'm still shaky about the lateral habenula or the nucleus accumbens, suggesting that my immersion therapy should continue.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.